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In this work we suggest a model for diffusion of particles in cellular media in which the walls of
cells are characterized by strongly reduced permeability. Our analytical results are obtained for a
regular system and confirmed also by extensive Monte Carlo simulations. They reveal several distinct
regimes of diffusion behavior in time whereby an initially normal diffusion at very short times turns
into a transient one at a characteristic crossover time 7s and later, after a period marked by another
characteristic time 71, returns to normal. At fixed permeability p of the cell walls we find that
these crossover times scale as 7s o« L2 and 71, o« L with the cell size L, whereas for L = const one
has 77, o« p~!. These transitions from Gaussian to transient behavior are analyzed by cumulants
of the mean quartic displacement (z*(¢)). Our results are valid for a regular arrangement of walls;
however, we find generally that the course of the mean-square displacement (z*(t)) with time is very
similar to results obtained in the past for diffusion in disordered media. The frequency-dependent
conductivity o(w) shows that at low frequency the real and imaginary parts of o(w) vary as w®
and w, respectively, while saturating at constant values for w — oo. By measuring the dc and ac
conductivity of charge carriers it becomes possible to determine both the size of the cells and the
permeability of their walls.
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I. INTRODUCTION

Diffusion of particles in regular and disordered systems
has been investigated extensively in recent years [1-11].
One of the most interesting features of stochastic trans-
port predicted and observed in nonhomogeneous media is
the (anomalous) non-Gaussian character of diffusive be-
havior. The understanding of the fundamentals of such
a deviation from normal diffusive behavior is still a chal-
lenge from the point of view of basic research. It is also
relevant for a number of applications, for instance, the
ability of barrier materials to drastically resist the gas
flux through them, the capacity of membranes for the
separation of gases, etc. The transport of small molecules
through cellular media could be ascribed to related prob-
lems of significant technological importance for a number
of new materials, such as zeolites, soap froths, biological
tissues, etc. Apart from the peculiarities of the periodic-
ity structure and the form of the cells, one can view such
cellular media as being composed of a more or less regular
array of cavities, separated by walls. We may consider
these cells as being filled by a homogeneous material so
that the walker performs a conventional random walk be-
fore hitting the walls of the cage, which are characterized
by some (reduced) permeability. The random walks are
thus constantly disrupted by the interaction of the carrier
with the cell walls and, as shown in the present paper,
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for certain values of the cell size L and the permeability
of the walls p, the diffusive motion presents a crossover
between two well characterized regions. Thus, during a
transient period of time which may last many decades,
the periodic system exhibits some characteristic features
of transport in amorphous materials.

Much theoretical work has been done to elucidate the
behavior of a single particle in disordered lattices [1-5].
There are also a number of studies considering the col-
lective diffusion on homogeneous and heterogeneous sub-
strates [6-10]. However, many aspects of the problem are
still not understood completely.

In disordered systems such as glassy materials, poly-
mers, etc., there are many difficulties in the character-
ization of the energy profile in which the particles are
moving because energetic and topological disorder is not
independent [11].

The lack of periodicity makes the problem difficult also
for an analytical treatment and closed expressions have
been derived in a few cases only. A number of results
can be obtained as a series expansion [12] or numerically
within the framework of the effective medium approxi-
mation [13,14] and also from renormalization group stud-
ies [15,16]. Another promising way to study the problem
is through computer simulation using both Monte Carlo
and molecular dynamics simulations, as, for example, in
the dynamics of small molecules in dense polymers sub-
ject to thermal motion [17,18], tracer diffusion on ran-
dom barrier media [19], tracer diffusion on heterogeneous
surface [20,21], etc.

This paper presents a modified version of the di-
chotomic barrier model introduced by Haus et al. [22],
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which is designed to describe motion in cellular materials.
We consider the motion of a single particle in this cellular
medium and calculate, by using the Monte Carlo simu-
lation in one dimension (1D) and 2D and an analytical
approach in 1D, several quantities related to the random
walk performed by the particle, such as, for example,
mean-square displacement, mean-quartic displacement,
cumulants, etc. Some analytical results in 2D are also
presented. We also calculate the frequency-dependent
diffusion coefficient which allows for some conclusions
concerning experimental measurements and structural
characteristics of the systems.

We believe that the present model, in which an or-
dered system is shown to exhibit some features typical
of anomalous diffusive behavior, provides an easy way to
gain more insight into the mechanism of random walks
in those interesting cases when diffusive behavior is not
Gaussian.

The outline of this work is as follows. In Sec. I we in-
troduce the model and general consideration. In Sec. II
an analytical approach in one dimension is given and all
the relevant quantities related to the random walk per-
formed by the particles are calculated. In Sec. III we cal-
culate the frequency-dependent diffusion coefficient and
a general expression for both limits of high and low fre-
quency is obtained as well as the correlation factor for
jumps and a closed expression for the size of the cell.
In Sec. IV we describe briefly the simulation scheme. In
Sec. V we present the results and a discussion. Finally,
a brief summary is given in Sec. VI. A brief analysis of
the 2D problem is given in the Appendix.

II. MODEL

The cellular medium in our model is characterized by a
regular array of cells which form an infinite lattice. The
linear size L of these cells is given by the number of sites
(potential wells) in which the walker may reside before
jumping to a nearest neighbor site, separated from this
by an energy barrier. We consider two possible values for
the energy barriers between sites (a dichotomic barrier
model) so that the probability to overcome the barrier
has also two values I and I',, (see Fig. 1). The transition
rate between sites within a cell is then given by I" and the
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FIG. 1. Schematic representation of a cellular medium in
1D.
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rate of crossing the cell borders by I';,. Since we generally
assume that the cell walls are much more difficult for the
walker to penetrate than the space within the cells, we
assume that I', <« I'. The high barriers are thought of
as distributed periodically in space at distance L + 1.
The motion of a random walker in such a periodic
structure is described by the standard master equation

POL 3 WanlP@, )~ P@O]. (1)

(n',n)

Here P(n,t) is the conditional probability that the par-
ticle occupies site n after a time ¢ has elapsed, given that
it began at site 0 at t = 0. The rates Wy , are assumed
to be symmetric under an interchange of subscripts. The
summation is over sites n’, which are nearest neighbors
of n; this restriction in the summation being denoted
by (n’,n). We normalize for simplicity the values of the
jump rates to that of the smaller barrier; then I' = 1/7
and I', = p/Z, where Z is the number of nearest neigh-
bors and p denotes the jump rate at which the particles
overcome the higher barrier I'y,.

III. ANALYTICAL SOLUTION IN 1D

In order to study the kinetics behavior of the particle
it is necessary to solve Eq. (1). For simplicity, we can
decompose the problem as follows.

Since all sites within a given cell are not equivalent (see
Fig. 1), let us define the conditional probability P;(n,t)
such that the position of the particle (measured from the
origin) at time t be n, given that its relative position
within the cell is j (j = 1, 2,...,L). It is then clear that

L
P(n,t) =) Pj(n,t). (2)

i=1

The master equation (1) can be rewritten as a set of L
coupled differential equations as

dPi(n,t) _ (1+p)
. 2

1
+3Paln+1,) + gPL(n -1,1),

P1 (n, t)

dP;(n,t) 1
———’dt = —Pj(n,t) + 5 Pj1(n - 1,1)
1
+§Pj+1(n+17t) ’ (3)
dPr(n,t)

P

= =P, 1,t

dt pfin+1.8)

1 1
1Pt 1,0 - P pyn gy
After the set of equations (3) is Fourier and Laplace

transformed, we obtain the following set of algebraically
coupled equations for the Fourier-Laplace transform £;

of the probability P;:
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1 —ik lattice site. Wi ite (4) i t f
[s 4 ( .;.p)] La(k,s) — 32 Lok, s) attice site e can write (4) in a compact form as
ML~LL =FL(0) 3 (5)
ik h
P ik,s) = Fu(k,0), o
2 Lq(k,s)
ik :
‘—2“[’1'—1(]‘:’5) = (1 +8)L;(k, s) Li(k,s) = | £i(k,s) (6)
e—ik Lr(k,s)
B L (k,s) = F(k,0), (4)
and
—1k ik
pe e
— 2 ﬁl(k,s) —_ 7[,[,_1(’6,3) .7:1(’6,0)
) [” - ;p)] Li(k,s) = Fi(k,0) . Fo(k,0) =1 7550 ")
F1,(k,0)

The initial conditions are F;(k,0) = 1/L, i.e., the particle
has the same probability of starting from any type of and the matrix My is given by

[s+(—1;_m] _6;"‘ 0 __%
—er [1+s] -~ 0 0
My (k,s) = 0 —5 s+l -5 0 : (8)
_g 0 _E.;_"_ [s+(1_‘;'lﬂ:|

In order to solve the set of equations (5) we have to determine the eigenvalues of M. In fact this matrix can be
expressed via simpler tridiagonal matrices By,

[s+1] —-%5 0 0
,e;" [s+1] _e‘z 0 0
Br(k,s)=| ... . (9)
0 -%  [s+1] —e—;
0 0 _et (s +1]

For the determinants of these matrices one gets the relation

(p+3s)

p
DetM, = [sz tsp+1)+ 5] DetBy_; — +——DetBy_s — * 5 | (10)
where for DetBy, the following recurrence relation holds:
DetBy,—
DetBy = (s + 1)DetBy_; — ——L=2 (11)

4
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Here DetBy = 1 and DetB; = 0 for j < 0. The recurrence (11) can be resolved since the matrix Bz(s) can be

diagonalized as

Now we can use the identity [23]

L .
Jm
= — - . 12
DetBy(s) j];[l[l—i—s cos (L+1)] (12)
2 ; 2(L+1) _

H 1+z) cos [ )| = = L (13)

i1 L+1 (z? —1)2LgL

where = must satisfy 22 — 2(s + 1)z + 1 = 0. Then we obtain the general expression in the form
1 2_1 1/212(L+1) _ 1

{1+s+[(1+5s)*-1]V%} (14)

DetB(s) =

where DetBy, — (L + 1)/2% for s — 0. Thus Eq. (10)
may be written as an Lth-order polynomial in powers of
s

2L(1—p +pL) L(L*?-1)(2—2p+pL) §2
2L 3 x 2L

L(L2 —1)(L* -4)(3-3p+pL) S
45 x 2L

+;€—[1 — cos(Lk)]

=0. (15)

It is thus evident from Eq. (15) that for £ = 0 there
is always an eigenvalue s = 0 which guarantees that the
probability of finding the walker at times t — oo, in-
finitely far away from where it has started, is finite. The
analysis of the L eigenvalues which emerge for the case of
a cell with L sites shows that they oscillate with a period
of 2* within the interval [-2 < s < 0] forming bands
of width ~ p. The smallest eigenvalue of Eq. (11), which
determines the long time behavior of the tracer particle
is found in the limit k£ — 0

pLk?

M +pL—1)] (16)

89 = —

As is well known [1] (15) yields the diffusion coefficient
at large (t — oo) times, which for our model appears to
be

Dg:oo = (17)

1+p(L-1)"°

As we can see in Eq. (17), the diffusion coefficient al-
ways depends on the product of the two parameters of
our model, namely, the probability p and the size of the
cell L. For p — 0 also Dy~ — 0, i.e., all particles will
be confined within the cells with impenetrable walls. For
the physically interesting case pL < 1 one would expect
thus that for a finite p the diffusion coefficient will be lin-
early proportional to the cell size L. It is worthwhile to

2145+ [(1+9)2 — 2} E{(L+ s+ [(1+9)2 — /27 1) °

—

mention here that this result would hold also for a disor-
dered system if it can be characterized by an average cell
size L. However, one should be more cautious when con-
sidering frequency-dependent conductivity in disordered
systems.

The second smallest eigenvalue s; of My is expected
to determine the slowest relaxation time of the diffusive
behavior back to normal. An estimate of the dependence
of this relaxation time on cell size L > 4 may be derived
from Eq. (15)

6(1 —p+pL) . 3
(2—2p+pL)(L2-1)  L*°

81 = — (18)

which scales proportionally to L2. The exact values for
the first few cell sizes are s; = —(1 + p) for L =

s1 = —(1+2p)/2 for L = 3, and 83 = (-2 —p +
v/2+ 2p + p?)/2 for L = 4. Since the eigenvalues are dis-
tributed symmetrically with respect to —1 in the interval
[—2, 0], the respective largest eigenvalues, which influence
the initial deviation from the normal diffusive behavior,
are given simply by —2 — s;. Thus one may conclude that
all relaxation times of the system scale proportionally to
L2. In Fig. 2 this behavior of the relaxation times is ver-

2.00 4

i
i

0.20 ¢
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1 10
L
FIG. 2. Dependence of the second smallest eigenvalue s;
on cell size L.
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ified for the case of the second smallest eigenvalue s; for
2 < L < 10. Due to the comparatively small values of
L, the slope of this dependence is somewhat less than 2
(= 1.967). We shall see later that s; plays an important
role in the frequency-dependent diffusion coefficient.

By solving Egs. (4) and using (2) with the initial con-
dition we can get L(k, s) and obtain the mean-square dis-
placement and the mean-quartic displacement as a func-
tion of s or ¢

82L(k, 5)
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and similarly for the mean quartic displacement we have

4 S
o) = | (21)
and
4
(@t = To00t) N (22)

It seems instructive to show the final expression for

(x2(s)) = T opz (19) L(k, s) at least for L = 2,3. For L = 2 we have
k=0
+ (1 + p)[1 + cos(k)]/2
d Ly(k,s) = ——
- ) R e B e e e 7311 B
O°F(k,t
(zz(t» = —T’(‘:z—l (20) i
k=0 and similarly for L = 3,
J
2 2 2 k)1/3 142 cos(k) cos(2k) 1
Lo(k,s) = ST 2+ P2+ cos(k))/3 + (1 +2p)[Z57 + = + 4 (24)

Now using Eq. (19) we can obtain the mean-square dis-
placement as a function of s, as

2 s(1+p)+4p
= =0 25
<1‘2(S)> 232(1 +p+ 3) ( )
for L = 2,
2s(2+p)+9p
2 = — 26
(1:3(3)) 332(1 + 2p + 28) ( )
for L = 3, and
252(3 4+ p) + 2s(5 + 4p) + 16p
@) = LRID A BEL) 210y,
4s2(1 + 3p + 4s + 2ps + 2s2)
for L = 4.

We can also get the time dependence of the mean-
square displacement by using inverse Laplace transforms.
Here we present only the analytical results of this proce-
dure for L = 2,

_ 1= ey, 2Pt
@0 =3 ] -t e s 2
and for L = 3,

_A[Ro] eeey,  St
e =3 |2 )+ iy (29

For larger systems we obtain the time dependence of
(z%(t)) numerically. It is seen from Egs. (28) and (29)
that the deviations from purely diffusive behavior, repre-
sented by the first terms on the right-hand sides of (28)
and (29), vanish exponentially with time, provided p < 1.
The relaxation times are indeed given by s;. For p =1
one has I' =T, i.e., the cell borders are equally perme-

s34+ (p+2)s? + 3(1+ 2p)s/4 + p[1 — cos(3k)]/4

f

able as the inner space and diffusion is normal. In the
coefficient of the linear terms on the right-hand side of
(28) and (29) one easily recovers the general result (17).

IV. FREQUENCY DEPENDENCE
OF THE DIFFUSION COEFFICIENT

The diffusion coefficient D(w) at frequency w is given
by the following equation [24]:

D(w) = —w? /0 (@ (t))etdt (30)

and related to the conductivity o(w) by the generalized
Einstein relation

Ne?D(w)
o(w) = Wt (31)
where N is the density of effective carriers of charge e, kg
is the Boltzmann factor, and T is the temperature. The
conductivity o(w) depends only on equilibrium properties
of the system in the absence of an applied electric field.

We can insert Egs. (28) and (29) into (30) to obtain
D(w) for L = 2,

2 (p—1)%2
D) =3 T spr )t + Ao
. w(p—1)?
oy 1+ p)7 (32)
and for L = 3,
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D( ) 3p 2(1’ - 1)2‘”2 Dy = fDy (36)
w) =
(1+2p)  3(2p+1)[w? + (1 +2p)%/4]

4i WP 1)?
3[w? + (1+2p)2/4] -

(33)

This frequency dependence of D underlines the distinc-
tion of our model from the case of normal diffusion where
D(w) = const. Again the condition for this is p < 1. In
Fig. 3 we show ReD(w) and ImD(w) for L = 4. Evi-
dently, with growing w the real part of the diffusion co-
efficient initially increases quadratically with w and then
at higher w saturates at a new value, different from the
low-frequency limit. It is interesting to note that this
frequency dependence Res(w) o w? is similar to the
dominant behavior obtained in the case of electrons hop-
ping between localized eigenstates in a disordered sys-
tem at very low temperatures [25-27]. The imaginary
part changes linearly with w at low frequencies, and goes
as w™! at high frequencies thus vanishing in the limit
w — 0o. In between ImD(w) has a maximum (cf. Fig. 3)
which gets sharper with growing L. It can be inferred
from Eqgs. (32) and (33) that the exact position of this
peak is determined by w = s;.

A general expression for the low- and the high-
frequency D(w) for arbitrary L and p may be derived
even more easily from s?(z?(t)), Eqs. (25)-(27), in the
limits s — 0 and s — oo. Thus one readily recovers the
old result (17) for the static diffusion coefficient

Lp

D0=D(w—)0)=f—+_—(L~—1)p,

(34)

whereas for large w (w — o0) we obtain the high-

frequency limit

L-1+p
A

One may introduce here also the correlation factor f as
a proportionality constant

Dy =D(w — o0) = (35)

0.8

e
N
.

ReD, ImD
s

e
)

0.0 0.5 1.0 15 2.0
®

FIG. 3. Dependence of the real (solid line) and imaginary
(dashed line) diffusion coefficient on frequency w.

and measure the degree of correlation between successive

hops of the particle. Here one gets

- pL?
(L-1+p)(L-1)p+1]

f (37)
Evidently for Lp <« 1 we have f =~ Lp, whereas for suffi-
ciently large L and Lp > 1 most of the hops are uncor-
related as f — 1.

In the major part of our results so far the two gov-
erning parameters of our model L and p have appeared
as a product Lp. It is thus difficult to extract struc-
tural features of the medium on the ground of transport
measurements of static properties alone. In this respect
Egs. (34) and (35) are important from an experimental
point of view since with these two relations it is possi-
ble to determine separately L (the size of the cells) and
p (the limiting jump probability) from the experimental
measurements of Dy and D, as

_ DoDo, —2Dg + 1
_DODOO—DO—DOO-}-I )

L (38)

It is interesting to note that for p = 1 (i.e., the cells have
no “volume”) we get from Eq. (37) Dy = Dy and it is
not possible to determine L, i.e., p = 1 reduces all results
to the case of normal diffusion. In order to know p for
a given L one has to solve a quadratic equation, which
follows from (32) and (33), where only the real roots have
physical meaning. Without solving it we give here only
the condition for this

(1+ DoDo)? 4+ 4D3 > 4(Do + D%Do). (39)

For Lp fixed =~ 1 we have Dy < Do, < 1 and the system
has always meaningful solutions. It can be proved that
for reasonable values of Dy, Do, (39) is always fulfilled.

V. MONTE CARLO SIMULATION SCHEME

This section describes briefly the simulation procedure
which was used to test our analytical predictions. Calcu-
lations are performed on 1D and 2D square lattices. As
described above, we consider an infinite cellular system,
that is, a replica of an L x L lattice, where the border
sites are connected with probability p to the next lattice.
Then a simple random walk is performed and the usual
quantities are stored: (z2(t)), (z*(t)), P(n,t), and the
fourth-order cumulant Cy, defined as

(=*(t))

N O

(40)

The last quantity is used to test whether the distribution
P(n,t) is Gaussian or not, since for a Gaussian distribu-
tion Cr = 0.

A trial move is carried out as follows: (i) A site n in
the lattice is chosen at random and is considered as a
starting point and (ii) the probability W, , is compared
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with a random number and the time is increased by one
unit whether or not the jump is successful. If the jump
is rejected, then another direction is chosen at random.
The usual averages are taken over 10° runs and the length
of each run is 10° Monte Carlo steps. In the simulation
the size of the unit cell varies from L = 2 to 80.

VI. RESULTS AND DISCUSSION

Figure 4 shows the behavior of the mean-square dis-
placement in 1D, for fixed p (p = 0.001) and different
sizes of the unit cell (L = 2-80), where the symbols de-
note the Monte Carlo results and the full lines corre-
spond to the analytical functions, Egs. (29) and (30) for
L = 2,3, and the numerical inverse Laplace transform
results of Eq. (28) for L = 4. Evidently one observes
excellent agreement between the analytic prediction and
the computer experiment. Following the curves in Fig. 4,
we can distinguish three time regimes: (i) a short initial
period when the walker is expected to move in a finite
“cage” of size L¢ (d = dimension) before it hits its walls
(during this interval we observe, especially for large L, a
quasinormal diffusion as long as z? < L?), (ii) a transient
time interval when the motion is clearly subdiffusive and
lasts rather long depending on the cell size L, and (iii) an
asymptotic regime when the diffusion becomes eventually
normal at later times.

In order to check the possibility to extend these results
to higher dimensions we have carried out calculations for
the quadratic regular cellular system with the cell size
L x L. This analytical calculation is much more involved
than that presented above for the 1D system. However,
the results for L = 2 and L = 3 are briefly described
the Appendix. One can see from these equations as well
as from the curves exhibited in Fig. 5 that the behavior
of the mean-square displacement (r?(t)) in 2D and the

10 : e

< (t)>
2

5

10 10

FIG. 4. Mean-square displacement vs time in 1D. The
full lines correspond to analytical results and the symbols to
Monte Carlo simulation.
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L=2
L=3
10" “L=6
L=10
s L=20
10 “L=30
=40
:/-\a\ 2 L=60
~— 10 <L=80
o
v 1 g
10 4
10 gﬁ S OO O rEaE
10" 0 i 5 g ; )
10 10 10 10 10 10

FIG. 5. Mean-square displacement vs time in 2D. The
full lines correspond to analytical results and the symbols to
Monte Carlo simulation.

other characteristics of the system are similar qualita-
tively and in many aspects quantitatively (at long times)
to the behavior of these characteristics in the 1D case.
It is necessary here to emphasize an important difference
between the behavior of a single particle in a regular ar-
ray of barriers (where we can see a qualitative similarity
between 1D and 2D) and anomalous diffusion where the
mean-square displacement (r%(t)) o t¥, where v depends
on dimensionality and other details of the media (i.e.,
percolation exponents). In our model we have a crossover
between two normal diffusion regimens; the three regimes
are clearly separated by crossover times which are ex-
pected to depend on the basic parameters of our model
L and p. In order to analyze the size dependence of the
crossover times, we plot the first crossover time 75 and
the second crossover time 7 as functions of the cell size
(Fig. 6) for 1D and 2D. It is evident that both 75 and
71, scale with L. The slope for the first crossover time is

10
10° .
o * -
10° . o 2 -
3 L] e
10 - R
~ A
‘C 10° R A
A
10' o
10 & Tl"::11
T,d=
. o7 ,d=2
10 : it .d=2
1070 L _
10’ ' 10°

FIG. 6. Scaling behavior of the crossover times vs size of
the cell.
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nearly 2 (1.93), while the slope of the second crossover
time is approximately 1 (1.13), independent of space di-
mension d. A simple analysis of these slopes suggests,
for the first crossover time, that on the average the par-
ticle hits the border of the cell after a characteristic time
Ts that is proportional to L2, during which period the
motion is nearly normal. Exponential corrections to this
behavior set in times proportional to L? [remember that
all eigenvalues are proportional to L~2; cf. Eq. (18)]. The
second crossover time 77, depends linearly on L and is ex-
pected to reflect the reduced diffusion coefficient because
of the large barriers at the cell borders. Indeed, from
Eq. (17) one has D;_, =~ pL for pL < 1 and this product
determines the slope of the mean-square displacement in
the large time limit. Generally one should also note that
with the increasing cell size L at p =const the transient
regime progressively vanishes and disappears at pL ~ 1.
On the plots shown in Figs. 4 and 5 this happens at
L = 100. The dependence of (z%(t)) on t for various p
is shown in Fig. 7 for L = 6 (this behavior is similar
to the temperature dependence of (r%(t)) on a correlated
heterogeneous surface [21]). Again the intermediate sub-
diffusive regime may be detected as long as pL < 1. The
corresponding p dependence of the large crossover time
7L, is shown in Fig. 8. We find that 7 scales very nearly
as L™ (the slope in Fig. 8 is ~ —0.94).

The most salient feature of the normal diffusion is the
Gaussian character of the distribution function P(n,t).
In order to analyze this characteristic of the distribu-
tion function we use the fourth-order cumulant defined
in Eq. (40) [25]. The cumulant reflects sensitively the
non-Gaussian character of the diffusion, since for normal
diffusion P(n,t) is Gaussian and is well defined by its
first and second moments (mean value and dispersion)
as a consequence Cr, = 0. In Fig. 9 we show the fourth-
order cumulants as a function of time for L = 2,3,4 and
p = 0.001. Again both the analytical and Monte Carlo
simulation results are in good agreement, except for very
short times. The analysis of Fig. 9 shows that for ¢ ~ 7,,
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100 © ©op=0.005
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s x p=0.05
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>
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FIG. 7. Mean-square displacement vs time for L = 6 and
different p.
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FIG. 8. Scaling behavior of the large crossover time 71, vs
p for L = 6.

Cr has a maximum and for ¢ & 71, a minimum, while
eventually at very large time ¢ — oo, Cr, — 0 and the
distribution becomes Gaussian. In Fig. 10 we present,
as an example, the evolution of the probability distribu-
tion function P(n,t) for these characteristic times (here
L =10 and p = 0.001). One can see that the distribution
is always symmetric and finite and, as time increases, it
eventually becomes Gaussian. In Fig. 11, we present
the analytical results for the p dependence of the fourth-
order cumulant for L = 2. We can see that as p — 1,
the cumulant C7, — 0, even at very short times after the
random walk has begun. An examination of the scaling
behavior of the time 7, (this is the time where the Cr,
has a minimum) as a function of p reveals (Fig. 12) that
the slope of the curve is the same as in Fig. 8. Thus we
conclude that the minimum of the curve Cf, vs time cor-
responds to the large crossover time 77, when the diffusive
behavior turns from transient to normal.

1.0 e —
i oL=2
cL=3
05 ¢ oL=4
A) [eNeTa
CL

FIG. 9. Cumulants Cy for L = 2,3,4 . Theory (lines) and
simulations (symbols).
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VII. SUMMARY AND FINAL COMMENTS

In this paper, we have presented both Monte Carlo
simulations and exact calculations of the relevant quan-
tities for the tracer diffusion in cellular structures. Mean-
square displacement, quartic moments, and cumulants,
as well as the frequency-dependent diffusion coefficient,
have been calculated exactly in 1D for small cell sizes L.
Some analytical results in 2D are presented in the Ap-
pendix. A general expression for the smallest eigenvalue
which determines the long time behavior of the walker
(diffusion coefficient at ¢ — oo) has been obtained as a
function of the size of the cell L and the permeability
p. We also have calculated the second smallest eigen-
value, which determines the slowest relaxation time of the
transient diffusive behavior back to normal. Our analy-
sis reveals several distinct regimes of diffusive behavior
in time where one observes an initial normal diffusion
at very short times turning into a subdiffusive one at a
characteristic crossover time 7g and later, after a period
determined by another characteristic time 7, returning
to normal. We find that the smallest crossover times
scale as 75 oc L? and the largest crossover times scale as
71, « L, and we suggest an interpretation for this finding.

The non-Gaussian character of the diffusion at inter-
mediate times is clearly seen from the fourth-order cu-
mulant. Finally, we calculate the frequency-dependent
diffusion coefficient and obtain a general expression for
the low- and high-frequency limits of D(w) for arbitrary
L and p. As a consequence, it appears possible to ob-
tain, by measuring the dc and the ac conductivity, closed
expressions that determine both the size of the cells L
and the permeability of the cell walls p. As emphasized
frequently in the paper, a precondition for verification
of these theoretical predictions is the requirement that
pL < 1, since for pL =~ 1 diffusion becomes normal and
no transient regimes whatsoever may be observed. The
condition pL < 1 thus poses certain constraints on the
combination of temperatures and cell sizes which can be
investigated successfully.

As a final remark we should like to point out that the
present model of a cellular medium as a periodic array of
small and high barriers is not chosen arbitrary. We have
checked that an alternative description in which barriers
are replaced by traps, characterized by large mean stay
times, i.e., the cell borders absorb the carriers which re-
main there for a long time before moving again into the
next or the previous cell, leads to normal diffusive behav-
ior at all time scales. Indeed, starting with a stationary
distribution of tracer particles in shallow (ordinary) and
deep (traps) sites and solving the governing set of equa-
tions (1) under the condition that jumps to the left or to
the right from any site are symmetric produces a mean-
square displacement changing linearly with time and the
corresponding diffusion coefficient is given by Eq. (17).
In fact the latter finding is not surprising since it has
been rigorously proved [28] before that the mean-square
displacement of a particle in the random-trap model is a
linear function of time, provided that the initial probabil-
ity distribution corresponds to a stationary distribution.

Given the observed deviations of diffusion behavior
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from normal in real disordered systems, one may con-
clude that it is mainly the barrier component of the struc-
ture which is responsible for them.
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APPENDIX

The motion of a walker in a 2D cellular medium is
considered, for example, on a regular square array of cells,
each of them containing L x L sites. The probability p
of crossing the border of such a cell is lower than the
probability 1/4 of jumping to one of the neighboring sites
within the same cell. Let P;(n,m,t) be the probability
that the walker occupies the site (n,m) with the label
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j (7 = 1,2,3,...,L?), which gives the position within
the cell. The motion of such a walker is described by a
set of L? differential equations similarly to the 1D case
considered in the main body of the text. It is rather
difficult to deal with the corresponding matrices in the
same general fashion as we did for the 1D case. However,
the results for L = 2,3 can be obtained explicitly. For
L=2,

s(14+p)+2p

(r*(e) = s2(1+p+2s)

and in real time

3p+1 _ptl 2p
2(t)) = l—e "z Y4+ ——t.
() = T - e+ T
For L = 3,
4s5(2+p) +9p
2 —
(7' (3)) - 382(1+2p+43)
and
8 1+p _2p+1 3p
2y ==-——F_[1—2""3 ¢ t
(r*(®)) 3(1+2p)2[ 15
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